terça-feira, 1 de dezembro de 2009
Por que Cálcular Muitos Dígitos no PI
ATE A SEGUNDA GUERRA:
* desafio, o prazer que sente todo verdadeiro matemático de enfrentar um problema difícil
* fama, o desejo de entrar para a História da Matemática
Por exemplo, um dos mais famosos records no calculo do Pi foi o de William Shanks o qual, em 1 874, depois de 15 anos de cálculos, obteve os 707 primeiros dígitos do PI. Seu trabalho foi de força bruta, a base de lápis e papel, e mesmo com o surgimento de máquinas de calcular e os primeiros computadores, esse record só foi quebrado em 1 947, por D. Ferguson usando uma calculadora mecânica, ao obter 808 dígitos. Mas, o mais importante é observarmos que esse tipo de esforço louco ficou para o passado com o surgimento dos computadores eletrônicos digitais, durante a Segunda Guerra
ATUALMENTE:
alem dos itens acima:
* demonstrar a potência de novos métodos de cálculo
os progressos algorítmicos no cálculo do PI foram muito mais sensacionais do que os das máquinas. Isso foi muito bem colocado por Neal Carothers:
"O cálculo dos 100 265 primeiros digitos do PI, em 1961, precisou de aproximadamente 105 000 operações aritméticas, enquanto que o algoritmo inventado pelos irmãos Borwein em 1984 precisou de apenas 112 operações aritméticas para obter os mesmos dígitos. Com meras 8 iterações desse algoritmo ( o que envolveu 56 operações aritméticas ) eles obtiveram em poucos segundos a aproximação que consumiu 15 anos da vida de Wm. Shanks".
* estudar a estatística da distribuição dos dígitos do PI
conforme já mencionamos acima, um dos interesses em calcularmos grandes quantidades de dígitos do PI é podermos verificar se é ou não verdadeira a hipótese da distribuição aleatória de seus dígitos. Os cálculos já realizados tendem a confirmar essa conjectura. Por exemplo, examinando os 200 bilhões de dígitos iniciais do PI, Kanada e Takahashi obtiveram a seguinte distribuiçõo:
DIGITO NUMERO de OCORRENCIAS
0 20000030841
1 19999914711
2 20000136978
3 20000069393
4 19999921691
5 19999917053
6 19999881515
7 19999967594
8 20000291044
9 19999869180
esses números de ocorrência estão bastante próximos dos esperados 20 000 000 000. Mais do que isso: os números de ocorrência tendem aos valores esperados com uma velocidade que está dentro do previsto pelo cálculo das probabilidades, conforme detalharemos adiante.
* demonstrar a potência de novos computadores:
uma maneira prática de exibirmos a potência de um novo computador é anunciando que o mesmo possibilitou a quebra do record no número de algarismos calculados para PI
E' tambem importante observar que essa corrida de super-computadores tomou o lugar dos esforcos loucos, por anos a fio, de gente como Shanks e outros:
calculistas ano dígitos máquina tempo por dígito
Wm. Shanks 1807 707 lápis e papel 1 semana/dig
Reitwiesner 1949 2,037 ENIAC 0.25 seg/dig
D. Shanks e Wrench 1961 100,265 IBM 7090 0.3 seg/dig
Guilloud e Bouyer 1973 1 milhão CDC 7600 0.1 seg/dig
Kanada e Tamura 1983 16 milhões Hitachi M-280H 0.006 seg/dig
irmaos Chudnovsky 1991 2 bilhões m-zero 0.0003 seg/dig
Kanada e Takahashi 1999 200 bilhões Hitachi SR8000 0.0000007 seg/dig
O Cálculo de Aproximações Praticas do PI
Nas lides diárias, dificilmente precisaremos conhecer uma aproximação melhor do que 3.14, enquanto que a vasta maioria dos calculos científicos não precisa saber mais do que 3.1416 e somente cálculos matemáticos muito exigentes, como o da obtenção de valores muito exatos das funções trigonométricas, precisaria saber mais de 10 dígitos do PI.
O mais antigo matemático que se preocupou com a obtenção de aproximações PRATICAS do PI foi Archimedes c. 200AC, em seu trabalho Sobre a medida do círculo. Usando o método dos polígonos, que descreveremos adiante, na proposição 3 desse trabalho ele mostra que:
a circunferência de qualquer círculo é maior do que três vezes seu diâmetro, e o excesso e' menor do que a sétima parte do diâmetro mas maior do que dez vezes sua septuagésima primeira parte
ou seja: 3 10/71 < PI < 3 1/7, o equivale a dizer, em frações decimais: 3.1408 < Pi < 3.1428.
O método dos polígonos envolve a obtenção de sucessivas delimitações da circunferência do círculo através do cálculo do perímetro de polígonos regulares inscritos e circunscritos, cujo número de lados vai sucessivamente dobrando. Consequentemente, o método é capaz, ao menos em princípio, de obter aproximações do valor do PI tão grandes quanto desejarmos. E' importante não esquecermos desse "em princípio" pois que Archimedes calculava com frações ordinárias e isso tornava seus cálculos extremamente penosos.
Archimedes partiu de quadrados e chegou até aos hexacontatetrágonos ( = polígonos regulares de 64 lados ) e aí parou pois que achou que esses produziam um aproximação PRATICA do PI.
Insistimos: ele parou aí porque considerava ter obtido uma aproximação prática e não porque não tinha condições de enfrentar o crescente volume de cálculos. Com efeito, Heron de Alexandria, in Metrika I, diz que Archimedes, em seu livro Plinthides kai kylindroi ( hoje, completamente perdido ), mostrou que:
211 875 / 67 441 < PI < 197 888 / 62 351
( em frações decimais, corresponde a: 3.1416349 < PI < 3.1737742 )
e, certamente, teria condições de fazer ainda melhor se assim desejasse.
Em verdade, o costume de preferir usar aproximações cómodas do PI, em lugar de aproximações mais exatas, não iniciou com Archimedes. Os mesopotâmicos e os romanos conheciam várias aproximações para o PI, embora preferissem usar PI = 3 ( é o que fazia, por exemplo, o famoso arquiteto romano Vitruvius ).
Logo após Archimedes, Apollonios, num outro trabalho lamentavelmente perdido e entitulado Okytokion, obteve a hoje clássica e universal aproximação PI = 3.1416 ( que provavelmente ele escreveu como 3927 / 1250 ), mas reconhecia que a mesma não tinha a praticidade da 22/7 ( ou seja 3 + 1/7 ) de Archimedes.
B. van der Waerden argumenta que o trabalho de Apollonios foi lentamente divulgado entre os matemáticos e astronomos indianos e chegou até a China onde Zu Chongzhi c. 450dC o teria aperfeiçoado para obter a estimativa 3.1415 926 < PI < 3.1415 927, que corresponde a calcular PI com sete dígitos corretos e que foi durante muitos séculos a mais exata aproximação conhecida para PI ( os livros de Zu Chongzhi foram perdidos, mas sabe-se que sua estimativa acima aparece no livro de Cálculo Infinitesimal, entitulado Zhui shu, que foi escrito por ele ou por seu filho, Zu Gengzhi, o qual foi um matemático ainda mais talentoso; o mais antigo relato que temos do cálculo do Pi por Zu Chongzhi aparece no comentário de Li Chunfeng do Jiu zhang suanshu, capítulo 1, problema 32 ).
Por que é Tão Dificil Calcular o PI
* ou se resumir em buscar o valor de tais numeros inteiros m e n
* ou explorar a periodicidade de sua representação decimal
( por exemplo, se fosse verdade que PI = 22 / 7 = 3.142857 142857 142857 ..., então nos bastaria achar o valor da parte inteira, 3, e o bloco 142857 que se repete indefinidamente )
O fato de que, por mais de 2000 anos, ninguém tivesse conseguido explorar nenhuma das duas possibilidades acima é exatamente o que sugeriu que PI não deva ser uma fração. A verificação rigorosa desse fato, ou seja a demonstração da irracionalidade de PI, veio só com Lambert, em 1 761.
Em verdade, por si só, a irracionalidade de PI não seria suficiente para determinar a dificuldade de seu cálculo; com efeito, existem irracionais de representação decimal previsível, e então fáceis de calcular, como é o caso de 3.10110111011110... . PI é difícil de calcular porque é um irracional imprevisível: sua representação decimal não mostra nenhuma previsibilidade, sendo que acredita-se que seus algarismos se distribuam aleatoriamente.
Pi Esta em todos os Lugares
É importante chamarmos a atenção para o fato que também são frequentes as ocorrências do PI em estudos onde aparentemente, principalmente para uma pessoa de pouca formação matemática, não estariam envolvidas simetrias circulares: na normalização da distribuição normal de probabilidades, na distribuição assintótica dos números primos, na construção de números primos próximos a inteiros dados ( na chamada constante de Ramanujan ), e mil e uma outras situações.
A Descoberta do PI
Quem pela primeira vez provou rigorosamente a existência do PI?
Bem, essa pergunta talvez nunca possa ser respondida. Que eu saiba, a mais antiga referência que temos de uma demonstração da existência do PI fala de Hippokrates de Chios, c. 430 AC. Trata-se de uma nota de Simplicius, filósofo grego que viveu quase mil anos depois de Hippokrates. Simplicius, no seu Comentário sobre o livro Physis, de Aristóteles, menciona que Eudemos na sua História da Geometria ( escrita c. 330 AC e, hoje, há muitos séculos totalmente perdida ) diz que Hippokrates demonstrou que a razão entre as áreas de círculos é igual à razão entre os quadrados dos respectivos diâmetros.
Por outro lado, o mais antigo documento ainda existente e que traz demonstração da existência do PI é o livro Elementos de Euclides, escrito em c. 300 AC. Na proposição 2 do Livro XII dos Elementos, Euclides enuncia e prova que círculos estão um para o outro assim como os quadrados de seus diâmetros, que é o resultado atribuído acima a Hippokrates. Ademais, na proposição 18 desse Livro XII, Euclides enuncia e prova que esferas estão uma para a outra assim como a razão tríplice de seus diâmetros.
Euclides encerrou o Livro XII de seus Elementos sem tratar da questão da área da esfera. ( Coube a Archimedes c. 250 AC mostrar que a razão entre as áreas de esferas é igual à razão entre os quadrados de seus diâmetros ). Mas o mais curioso é que em nenhum dos treze livros dos Elementos Euclides fala no PI da circunferência.
Coube a Archimedes a tarefa de ir mais longe do que Euclides demonstrando a existência dos PI's que esse não abordou e estabelecendo resultados que permitem facilmente relacionar os quatro tipos de PI: o PI das circunferências, o PI de áreas de círculos, o PI de áreas de esferas e o PI de volumes de esferas.
Para levar a cabo esse Projeto PI, Archimedes precisou completar o conhecimento exposto nos Elementos de Euclides, descobrindo e demonstrando os seguintes três teoremas:
* a área de cada círculo é igual a de um triângulo reto cujos catetos valem o raio e a circunferência do círculo
( Archimedes: Sobre a Medida do Círculo, proposição 1 )
* a área de cada esfera é igual a quatro vezes a área de seu círculo máximo
( Archimedes: Sobre a Esfera e o Cilindro, Livro I, proposição 33 )
* a razão entre o volume da esfera e o do cilindro que a circunscreve é 2:3
( em verdade, Archimedes in Sobre a Esfera e o Cilindro, Livro I, proposição 35, trabalha com um cilindro maior, de mesma altura e mesmo eixo que o cilindro circunscrevendo a esfera, MAS com o dobro do diâmetro; essa proposição 35 relaciona o volume da esfera, o volume do tal cilindro maior e o volume do cone inscrito no cilindro maior:
VOL ( esfera ) + VOL ( cone ) = 1/2 VOL ( cil maior )
Ora, no Livro XII, prop. 10, Euclides provou que VOL ( cone ) = 1/3 VOL ( cil maior ), de modo que a relação acima mostra que:
VOL ( esfera ) = 1/2 VOL ( cil maior ) - 1/3 VOL ( cil maior ) = 1/6 VOL ( cil maior ) = 2/3 VOL ( cil circunscrito );
Archimedes acabou realmente usando a razão 2:3 e, aliás, sentia-se tão orgulhoso desse resultado que pediu que fosse gravada uma figura do mesmo em sua lápide )
Bem, mas voltemos a um pouco antes do Projeto PI de Archimedes. E' bastante conhecido que Euclides foi matemático pouco original e que seu livro Elementos corresponde mais a uma compilação de resultados já conhecidos e a uma terceira geração de stoicheia ( = elementos ), ie de uma terceira geração de organizações axiomáticas dos conhecimentos básicos da geometria elementar grega. Isso nos leva a indagar quem teriam sido os reais autores das proposições 2 e 18 de seu livro XII. Partindo do fato que Euclides baseou a demonstração dessas duas proposições no Método da Exaustão, T. L. Heath ( in The Thirteen Books of Euclid's Elements ) concluiu que as mesmas remontam, no mínimo, a Eudoxos c. 370 AC, o qual é tido como o primeiro grande matemático a desenvolver o Método da Exaustão. E' importante, contudo, que não esqueçamos que essas demonstrações podem ser anteriores a Eudoxos, pois esse método foi criado duas gerações antes dele, por Antiphon e Bryson em c. 430 AC.
Muitas pessoas acham que precisamos ter o valor do PI para calcular circunferência de círculos. Um exemplo clássico mostrando que isso NAO e' verdade e' o cálculo da circunferência da Terra por Erathostenes c. 250 AC. Ele mediu um arco de meridiano terrestre de 5000 estádios e, usando um instrumento de forma semi-esférica ( chamado skaphe ), verificou que esse arco de meridiano era proporcional a um arco de meridiano da skaphe, o qual media 1/50 do meridiano da esfera desse instrumento. Consequentemente, concluiu que o meridiano terrestre e' 50*5000 = 250000 estádios. Ou seja, em lugar nenhum precisou saber o valor do PI!
Esse exemplo, e outros que poderiamos mencionar, mostram que é bastante surpreendente que a quase totalidade das pessoas ache que PI foi descoberto ao se relacionar circunferências com diâmetros dos respectivos círculos. Embora a definição usual do PI baseie-se na constância da razão circunferência : diâmetro, muito provavelmente não foi essa a origem do PI. Com efeito, é difícil imaginarmos situações práticas reais onde, numa civilização incipiente, alguém tenha precisado calcular a circunferência de um círculo de diâmetro conhecido, ou vice-versa. Muito mais naturais sao problemas requerendo achar a área de um campo circular em termos do diâmetro ou mesmo em termos da circunferência. Em verdade, devia-se até questionar se a descoberta do PI realmente ocorreu no contexto de círculos, e não no de esferas.
Essa inquietação nao é só nossa. O famoso historiador matemático Abraham Seidenberg gastou muitos anos de sua vida vasculhando museus e lendo trabalhos de antropologia, em busca dos mais antigos indícios de envolvimento humano com círculos, esferas e o PI. O resultado desses estudos foi resumido nos seus artigos The ritual origin of the circle and square, Archiv. Hist. Exact Sc. 25, (1981), e principalmente em On the volume of a sphere, Archiv. Hist. Exact Sc. 39, (1988). Sua conclusão foi que o cálculo do volume da esfera em termos de seu diâmetro remontaria a antes de 2 000AC, sendo anterior a matemática das grandes antigas civilizações mesopotâmica, indiana, chinesa e egípcia. O historiador matemático B. van der Waerden identifica essa origem com o que chamo de Tradição Origem da Matemática e a localiza no Vale do Danúbio c. 4 000 AC. Segundo Seidenberg, nessa tradição também se teria reconhecido a igualdade da constante de proporcionalidade relacionando circunferência com diâmetro e área de círculo com quadrado do raio; ou seja, já nessa tradição, possivelmente lá por 3000 a 4000AC, se teria reconhecido que o "PI da circunferência" é igual ao "PI da área do círculo". Também é interessante observar que Seidenberg concluiu que a descoberta dessa igualdade usou métodos infinitesimais, ao estilo de Cavalieri.
mais antigo doc com PI E' preciso que fique bem claro que o que o trabalho de Seidenberg achou na noite dos tempos, em bem remota antiguidade, foram apenas indícios indiretos de envolvimento com PI. Os mais antigos documentos concretos que temos e que tratam explícitamente de PI são tabletas mesopotâmicas de c. 2 000 AC, como a mostrada ao lado. Examinando a figura desenhada, fica fácil ver que a mesma corresponde a adotar a aproximação grosseira PI = 3, que é a mais comum das aproximações para PI que encontramos nos documentos mesopotâmicos.
Um dos Grandes Matemáticos
"Prestem atenção: num triângulo retângulo, o quadrado da hipotenusa é igual à soma dos quadrados dos catetos. Ou seja: a2=b2+c2. Está claro?" O professor larga o giz e se volta para a classe: "pois este é o enunciado do teorema de Pitágoras. Vamos passar agora à demonstração". Enquanto o professor se vira de novo para o quadro negro, alguns alunos se entreolham: "E quem foi esse Pitágoras?"
Um grego - o nome não engana ninguém. Um matemático - óbvio, caso contrário não faria teoremas. Um gênio - claro, senão quem não se preocuparia com ele e seus teoremas 25 séculos após sua morte? Um astrônomo - bem, vá lá, astronomia e matemática sempre andaram juntas. Mas Pitágoras foi mais que isso: conhecia também música, moral, filosofia, geografia e medicina.
Pitágoras viveu há 2500 anos e não deixou obras escritas. O que se sabe de sua biografia e de suas idéias é uma mistura de lenda e história real. A lenda começa antes mesmo de Pitágoras nascer: por volta de 580 a.C., a sacerdotisa do deus Apolo disse a um casal que vivia na ilha de Samos, no mar Egeu: "Tereis um filho de grande beleza e extraordinária inteligência; será um dos homens mais sábios de todos os tempos." No mesmo ano, o casal teve um filho. Era Pitágoras.
Lenda ou não lenda, a inteligência do jovem Pitágoras assombrava os doutos das melhores escolas de Samos: não conseguiam responder as perguntas do moço de 16 anos. Nessas condições, só havia uma coisa a fazer: despachá-lo a Mileto, para que estudasse com Tales - o maior sábio da época, provavelmente o primeiro grego a se dedicar cientificamente aos números.
Adulto, Pitágoras resolveu ampliar seus interesses. E começou a somar, além dos números, idéias sobre a ciência e a religião de outros povos. Acreditando que era preciso ver para crer, arrumou as malas e disse "até logo" a seus patrícios: foi à Síria, depois à Arábia, à Caldéia, à Pérsia, à Índia e, como última escala, ao Egito, onde passou mais de 20 anos e se fez até sacerdote para melhor conhecer os mistérios da religião egípcia. Dizem que quando Cambises conquistou o Egito, Pitágoras foi levado em cativeiro para a Babilônia. Curioso como era, o grego aproveitou a chance para descobrir em que pé andavam as ciências naquele país.
Muito tempo tinha passado e Pitágoras já dobrava a curva dos 50. Seu desejo era voltar a Samos e abrir uma escola. Mas Samos tinha mudado e o ditador Polícrates, que governava a ilha, não queria saber nem de escolas nem de templos. Aí Pitágoras seguiu adiante, a Crotona, no sul da Itália, onde as melhores famílias da cidade lhe confiaram prazerosamente a educação de seus filhos. E Pitágoras pôde, por fim, fundar sua escola, onde passou a ensinar aritmética, geometria, música e astronomia. E, permeando essas disciplinas, aulas de religião e moral.
Mais que uma escola, Pitágoras conseguira criar uma comunidade religiosa, filosófica e política. Os alunos que formava saíam para ocupar altos cargos do governo local; cientes de sua sabedoria torciam o nariz antes as massas ignorantes e apoiavam o partido aristocrático. Resultado: as massas retrucaram pela violência e - segundo dizem uns - incendiaram a escola, prenderam o professor e o mataram. Outros são mais otimistas: contam que Pitágoras foi só exilado para Metaponto, mais ao norte, na Lucânia, onde morreu, esquecido mas em paz, com mais de 80 anos de idade.
Assim se demonstra o teorema de Pitágoras: somando os quadradinhos dos quadrados menores, que correspondem aos catetos, vê-se que seu número é igual aos do quadrado maior, cujo lado constitui a hipotenusa de um triângulo.
"Tudo são números"
Pitágoras imaginava os números como pontos, que determinam formas. E o Universo, o que é, senão um conjunto de átomos, cuja disposição dá forma à matéria?
De qualquer modo, Pitágoras não se contentava em dizer frases; demonstrou que era necessário provar e verificar geometricamente um enunciado matemático, ou seja, expressá-lo como teorema. E formulou vários, além daquele mais conhecido. Por exemplo: a soma dos ângulos internos de um triângulo é igual a soma de dois ângulos retos (a+b+c=180º); a superfície de um quadrado é igual a multiplicação de um lado por si mesmo. Donde a expressão "elevar ao quadrado": 2x2=22; o volume de um cubo é igual à sua aresta multiplicada três vezes por si mesma: 2x2x2=23, o que originou a expressão "elevar ao cubo".
Pitágoras também mostrou que música e matemática são parentes: o comprimento e a tensão das cordas de uma lira, por exemplo, podem ser convertidos em expressões matemáticas.
O gênio de Samos era um homem religioso, acreditava na transmigração da alma: quando um homem morre, sua alma passa para outro ou para um animal. Só pela vida "pura" a alma poderia libertar-se do corpo e viver no céu. E vida pura significava, para Pitágoras, austeridade, coragem, piedade, obediência, lealdade. Dizia a seus alunos: "Honra os deuses sobre todas as coisas. Honra teu pai e tua mãe. Acostuma-te a dominar a fome, o sono, a preguiça e a cólera". Mas acreditava igualmente numa série de superstições: não comer carne por causa da reencarnação, não comer favas, não atiçar o fogo com ferro, não erguer algo caído do chão.
Melhor meio de purificar a alma, ensinava Pitágoras, era a música. O Universo - afirmava - era uma escala, ou um número musical, cuja própria existência se devia à sua harmonia.
Como astrônomo, seu principal mérito foi conceber o Universo em movimento. Como teórico de medicina, achava que o corpo humano era constituído basicamente por uma harmonia: homem doente era sinal de harmonia rompida. Como filósofo, deu origem a uma corrente que se desenvolveu durante os séculos seguintes, inspirando - entre os principais pensadores gregos - inclusive o famoso Platão.
sábado, 28 de novembro de 2009
DICA DE FILME

Pois, o que temos de reclamar por não realizar um projeto sem condições objetivas diante de tanta escassez de tudo? É emocionante o depoimento de Valéria que afirma que ninguém na escola acreditava que era mesmo ela que compunha seus poemas
No extremo oposto da esquizofrênica pirâmide social brasileira, o diretor colhe com admirável sensibilidade as angústias dos jovens de classe média alta dos tradicionais colégios confessionais do Rio de Janeiro e São Paulo, superexigidos por pais, professores e amigos. Um painel de recursos tecnológico-educacionais abundantes, muita expectativa de competição e muito pouco afeto.
Mas meio a estas extremidades, o diretor João Jardim nos surpreende com a realidade mundo-cão das escolas das favelas das periferias do Rio e São Paulo. Escolas dantescas largadas à incúria das autoridades públicas, dentro do tradicional quadro de irresponsabilidade política e de ausência de cidadania característico de nossa cultura de impunidade e de pastiche. Professores que fingem ensinar e alunos que fingem aprender, aqueles cativos do terror de alunos delinqüentes e estes do narcotráfico que coabita muro a muro com a escola e alicia os jovens para o ilusório mundo das conquistas fáceis, alimentadas pela alienação consumista da mídia.
Os depoimentos que se seguem são de cortar o coração de qualquer cidadão que tenha um filho brasileiro em idade escolar. Os jovens favelados de menor afirmam com escárnio que não tem lá muito problema roubar alguém ou até mesmo matar se for para livrar a cara, pois o máximo que vão pegar é três anos na Febem. Além do que sai na televisão todo o dia que os políticos roubam muito mais e não são presos, o que justifica a criminalidade geral da sociedade são justamente seus políticos.
Basta ligar a televisão e está lá: o crime no Brasil compensa!
Grande e dura aula de cidadania brasileira para tomarmos ciência o quanto antes que, se a educação e as instituições jurídico-políticas estão sucateadas no Brasil, só sobra mesmo a mídia para salvar o país da barbárie. Até por que o círculo vicioso da violação legal e da violência social não interessa mais a ninguém, sobretudo aos mais abastados que falam tanto dos entraves e gargalos da economia e se omitem do dever de dar o exemplo da iniciativa e da participação política.
FONTE:http://www.avozdocidadao.com.br/detailAgendaCidadania.asp?ID=521
Palestra de Matemática Aplicada
Assista gratuitamente a esta super palestra de apresentação do Curso de Cálculo do Prof. Ricieri e descubra como aprender logaritmo, trigonometria, função, limite, derivada, integral, vetor, matriz, transformadas, fractais, estatística etc. e, o mais importante, para que serve isso tudo.
Destinada a formados, professores e alunos de Matemática, Física, Engenharia, Computação, Tecnologia, Biomédicas, Administração, Licenciatura, técnicos, e profissionais interessados na área.
Local: R. Gaspar Lourenço, 64 - Museu da Matemática - Metrô Ana Rosa - SP
Sobre os dias e horários das palestras do
Prof. Ricieri consultar a Prandiano:
(0xx12) 3931-7281
sexta-feira, 27 de novembro de 2009
A Maior Descoberta Matemática de Todos os Tempos
É incerta a origem do zero. Aparece nos Hindus com o nome de sunya , que significa vazio, sendo a princípio expresso por um ponto.
Os Babilónios não tinham símbolo para o zero, mas muitas vezes encontram-se espaços vazios e cerca de 200 a.C. aparece entre eles um símbolo com algumas propriedades do zero, o que faz suspeitar que os Hindus tenham recebido desta origem a ideia deste símbolo.
Os árabes empregaram, para o zero, a palavra tsifr , que também significava vazio; os romanos chamaram-lhe zephirum, donde se deu a evolução da palavra: zephirum >> zenero >> zero.
É interessante assinalar que os Maias, no século V, já possuíam a noção do zero, número que usavam no seu sistema de numeração decimal.
Como poderíamos hoje passar tão facilmente da dezena para a centena, para o milhar, etc., se não existisse o algarismo zero? Teríamos grande dificuldades em representar todos os números, se ele não existisse. Hoje escrevemos facilmente 305, 1020, ... Essa dificuldade foi sentida pelas civilizações antigas.
A criação do zero foi considerada, por Laplace, como a maior descoberta matemática de todos os tempos.
A descoberta do zero marca uma época no desenvolvimento do raciocínio lógico do homem, porque nasceu de uma atitude contrária ao bom senso, a da criação de um símbolo para representar o nada. É uma das maiores conquistas da inteligência humana.
Alguns povos usaram, como ainda hoje usam, o ábaco para fazer as suas "contas". Era uma espécie de quadro dividido em colunas onde se iam introduzindo pequenas pedras (calculi). Quando a primeira coluna atingia dez pedrinhas, retiravam-se, e eram representadas por uma só na 2ª coluna. Quando a 2ª coluna tivesse dez pedras, ficavam representadas por uma só pedra, na 3ª coluna, e assim por diante...
Como se escreveria então este número, representado por uma pedra e duas colunas vazias?
Com a invenção do zero foi fácil ! Escreve-se 100. O zero aparece, portanto, por exigência da numeração escrita.
Quando o homem começou a contar, terá feito "naturalmente" como a criança, olhando para os dedos: 1, 2, 3, 4, 5, ...(até infinito) por isso diz-se que são os números naturais.
Quando, mais tarde, se introduz o zero, passa a contar: 0, 1, 2, 3, 4, ... e a estes números chamam-se os números inteiros. Os símbolos 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 são chamados dígitos (em latim "digitus" significa dedo).
http://www.educ.fc.ul.pt/icm/icm99/icm36/zero.htmPequena introdução a Geometria Analítica
A Geometria Analítica é uma parte da Matemática , que através de processos particulares , estabelece as relações existentes entre a Álgebra e a Geometria. Desse modo , uma reta , uma circunferência ou uma figura podem ter suas propriedades estudadas através de métodos algébricos .
Os estudos iniciais da Geometria Analítica se deram no século XVII , e devem-se ao filósofo e matemático francês René Descartes (1596 - 1650), inventor das coordenadas cartesianas (assim chamadas em sua homenagem), que permitiram a representação numérica de propriedades geométricas. No seu livro Discurso sobre o Método, escrito em 1637, aparece a célebre frase em latim "Cogito ergo sum" , ou seja: "Penso, logo existo".
1.1 - Coordenadas cartesianas na reta
Seja a reta r na Fig. abaixo e sobre ela tomemos um ponto O chamado origem.
Adotemos uma unidade de medida e suponhamos que os comprimentos medidos a partir de O, sejam positivos à direita e negativos à esquerda.
é 1, etc.
A reta r é chamada eixo das abscissas.
1.2 - Coordenadas cartesianas no plano
Com o modo simples de se representar números numa reta, visto acima, podemos estender a idéia para o plano, basta que para isto consideremos duas retas perpendiculares que se interceptem num ponto O, que será a origem do sistema. Veja a Fig. a seguir:
O eixo OX é denominado eixo das abscissas e o eixo OY é denominado eixo das ordenadas.
O ponto O(0,0) é a origem do sistema de coordenadas cartesianas.
Os sinais algébricos de a e b definem regiões do plano denominadas QUADRANTES.
No 1º quadrante, a e b são positivos, no 2º quadrante, a é negativo e b positivo, no 3º quadrante, ambos são negativos e finalmente no 4º quadrante a é positivo e b negativo.
Observe que todos os pontos do eixo OX tem ordenada nula e todos os pontos do eixo OY tem abscissa nula. Assim, dizemos que a equação do eixo OX é y = 0 e a equação do eixo OY é
x = 0.
Já os pontos do plano onde a = -b (ou b = - a), ou seja, de coordenadas simétricas, definem uma reta denominada bissetriz do 2º quadrante, cuja equação evidentemente é y = - x.
Os eixos OX e OY são denominados eixos coordenados.
Exemplos:
1) Se o ponto P(2m-8 , m) pertence ao eixo dos y , então :
a) m é um número primo
b) m é primo e par
c) m é um quadrado perfeito
d) m = 0
e) m <>
Solução:
Logo, no caso teremos 2m - 8 = 0, de onde tiramos m = 4 e portanto a alternativa correta é a letra C, pois 4 é um quadrado perfeito (4 = 22).
2) Se o ponto P(r - 12 , 4r - 6) pertença à primeira bissetriz , então podemos afirmar que :
a) r é um número natural
b) r = - 3
c) r é raiz da equação x3 - x2 + x + 14 = 0
d) r é um número inteiro menor do que - 3 .
e) não existe r nestas condições .
Solução:
Das alternativas apresentadas, concluímos que a correta é a letra C, uma vez que -2 é raiz da equação dada. Basta substituir x por -2 ou seja:
(-2)3 - (-2)2 + (-2) + 14 = 0 o que confirma que -2 é raiz da equação.
3) Se o ponto P(k , -2) satisfaz à relação x + 2y - 10 = 0 , então o valor de k 2 é :
a) 200
b) 196
c) 144
d) 36
e) 0
Solução:
Logo, k = 14 e portanto k2 = 142 = 196.
Logo, a alternativa correta é a letra B.
2 - Fórmula da distância entre dois pontos do plano cartesiano
Esta fórmula também pode ser escrita como: d2AB = (Xb - Xa)2 + (Yb - Ya)2 , obtida da anterior, elevando-se ao quadrado (quadrando-se) ambos os membros.
Exercício Resolvido
O ponto A pertence ao semi-eixo positivo das ordenadas ; dados os pontos B(2 , 3) e C(-4 ,1) , sabe-se que do ponto A se vê o segmento BC sob um ângulo reto . Nestas condições podemos afirmar que o ponto A é :
a) (3,0)
b) (0, -1)
c) (0,4)
d) (0,5)
e) (0, 3)
Solução:
AB2 = ( 0 - 2 )2 + ( y - 3 )2 = 4 + ( y - 3 )2
AC2 = ( 0 - (-4))2 + ( y - 1)2 = 16 + ( y - 1 )2
BC2 = ( 2 - (-4))2 + ( 3 - 1 )2 = 40
Substituindo, vem: 4 + ( y - 3 )2 + 16 + ( y - 1 )2 = 40 \ ( y - 3 )2 + ( y - 1)2 = 40 - 4 - 16 = 20
Desenvolvendo, fica: y2 - 6y + 9 + y2 - 2y + 1 = 20 \ 2y2 - 8y - 10 = 0 \ y2 - 4y - 5 = 0 , que resolvida, encontramos y = 5 ou y = -1. A raiz y = -1 não serve, pois foi dito no problema que o ponto A está no semi-eixo positivo . Portanto, o ponto procurado é A(0,5), o que nos leva a concluir que a alternativa correta é a letra D.
3 - Ponto médio de um segmento
Nestas condições, dados os pontos A(x1 , y1) e B(x2 , y2) , as coordenadas do ponto médio
M(xm , ym) serão dadas por:
Exercício Resolvido
Sendo W o comprimento da mediana relativa ao lado BC do triângulo ABC onde A(0,0), B(4,6) e C(2,4) , então W2 é igual a:
a) 25
b) 32
c) 34
d) 44
e) 16
Solução:
4 - Baricentro de um triângulo
Sabemos da Geometria plana , que o baricentro de um triângulo ABC é o ponto de encontro das 3 medianas . Sendo G o baricentro , temos que AG = 2 . GM onde M é o ponto médio do lado oposto ao vértice A (AM é uma das 3 medianas do triângulo).
Nestas condições , as coordenadas do baricentro G(xg , yg) do triângulo ABC onde A(xa , ya) , B(xb , yb) e C(xc , yc) é dado por :
Conclui-se pois que as coordenadas do baricentro do triângulo ABC, são iguais às médias aritméticas das coordenadas dos pontos A , B e C.
Assim, por exemplo, o baricentro (também conhecido como centro de gravidade) do triângulo ABC onde A(3,5) , B(4, -1) e C(11, 8) será o ponto G(6, 4). Verifique com o uso direto das fórmulas.
Exercício resolvido
Conhecendo-se o baricentro B(3,5), do triângulo XYZ onde X(2,5) , Y(-4,6) , qual o comprimento do segmento BZ?
Solução:
Seja o ponto Z(a,b). Temos, pela fórmula do baricentro:
3 = (2 - 4 + a) / 3 e 5 = (5 + 6 + b) / 3
Daí, vem que a = 11 e b = 4. O ponto Z será portanto Z(11, 4).
Usando a fórmula da distância entre dois pontos, lembrando que B(3,5) e Z(11,4),
encontraremos BZ = 651/2 u.c. (u.c. = unidades de comprimento).
Agora resolva este:
Os pontos A(m, 7), B(0, n) e C(3, 1) são os vértices de um triângulo cujo baricentro é o ponto
G(6, 11). Calcule o valor de m2 + n2.
Resposta: 850