terça-feira, 1 de dezembro de 2009

O Cálculo de Aproximações Praticas do PI

Dada a ubiqüidade do PI, já comentada acima, é mais do que natural e importante que desejemos calcular seu valor. Contudo, dada sua irracionalidade imprevisível, jamais saberemos seu valor exato e isso nos leva a indagar: por que não nos contentarmos com aproximações PRATICAS do PI?

Nas lides diárias, dificilmente precisaremos conhecer uma aproximação melhor do que 3.14, enquanto que a vasta maioria dos calculos científicos não precisa saber mais do que 3.1416 e somente cálculos matemáticos muito exigentes, como o da obtenção de valores muito exatos das funções trigonométricas, precisaria saber mais de 10 dígitos do PI.

O mais antigo matemático que se preocupou com a obtenção de aproximações PRATICAS do PI foi Archimedes c. 200AC, em seu trabalho Sobre a medida do círculo. Usando o método dos polígonos, que descreveremos adiante, na proposição 3 desse trabalho ele mostra que:

a circunferência de qualquer círculo é maior do que três vezes seu diâmetro, e o excesso e' menor do que a sétima parte do diâmetro mas maior do que dez vezes sua septuagésima primeira parte

ou seja: 3 10/71 < PI < 3 1/7, o equivale a dizer, em frações decimais: 3.1408 < Pi < 3.1428.

O método dos polígonos envolve a obtenção de sucessivas delimitações da circunferência do círculo através do cálculo do perímetro de polígonos regulares inscritos e circunscritos, cujo número de lados vai sucessivamente dobrando. Consequentemente, o método é capaz, ao menos em princípio, de obter aproximações do valor do PI tão grandes quanto desejarmos. E' importante não esquecermos desse "em princípio" pois que Archimedes calculava com frações ordinárias e isso tornava seus cálculos extremamente penosos.
Archimedes partiu de quadrados e chegou até aos hexacontatetrágonos ( = polígonos regulares de 64 lados ) e aí parou pois que achou que esses produziam um aproximação PRATICA do PI.
Insistimos: ele parou aí porque considerava ter obtido uma aproximação prática e não porque não tinha condições de enfrentar o crescente volume de cálculos. Com efeito, Heron de Alexandria, in Metrika I, diz que Archimedes, em seu livro Plinthides kai kylindroi ( hoje, completamente perdido ), mostrou que:

211 875 / 67 441 < PI < 197 888 / 62 351
( em frações decimais, corresponde a: 3.1416349 < PI < 3.1737742 )
e, certamente, teria condições de fazer ainda melhor se assim desejasse.
Em verdade, o costume de preferir usar aproximações cómodas do PI, em lugar de aproximações mais exatas, não iniciou com Archimedes. Os mesopotâmicos e os romanos conheciam várias aproximações para o PI, embora preferissem usar PI = 3 ( é o que fazia, por exemplo, o famoso arquiteto romano Vitruvius ).

Logo após Archimedes, Apollonios, num outro trabalho lamentavelmente perdido e entitulado Okytokion, obteve a hoje clássica e universal aproximação PI = 3.1416 ( que provavelmente ele escreveu como 3927 / 1250 ), mas reconhecia que a mesma não tinha a praticidade da 22/7 ( ou seja 3 + 1/7 ) de Archimedes.
B. van der Waerden argumenta que o trabalho de Apollonios foi lentamente divulgado entre os matemáticos e astronomos indianos e chegou até a China onde Zu Chongzhi c. 450dC o teria aperfeiçoado para obter a estimativa 3.1415 926 < PI < 3.1415 927, que corresponde a calcular PI com sete dígitos corretos e que foi durante muitos séculos a mais exata aproximação conhecida para PI ( os livros de Zu Chongzhi foram perdidos, mas sabe-se que sua estimativa acima aparece no livro de Cálculo Infinitesimal, entitulado Zhui shu, que foi escrito por ele ou por seu filho, Zu Gengzhi, o qual foi um matemático ainda mais talentoso; o mais antigo relato que temos do cálculo do Pi por Zu Chongzhi aparece no comentário de Li Chunfeng do Jiu zhang suanshu, capítulo 1, problema 32 ).

Nenhum comentário:

Postar um comentário